
Novel Cobalt-Mediated Regio- and Stereoselective
Radical Cyclizations

Karen L. Salazar, Masood A. Khan, and
Kenneth M. Nicholas*

Department of Chemistry and Biochemistry
UniVersity of Oklahoma, Norman, Oklahoma 73019

ReceiVed June 5, 1997

The discovery of efficient, radical-based carbon-carbon
bond-forming reactions has provided a powerful new array of
tools for organic synthesis.1 Especially valuable are intramo-
lecular radical additions to carbon-carbon double bonds as
typified by the 5-hexenyl radical cyclization (eq 1).2 A
distinctive and useful feature of this reaction is the kinetically-
controlled, highly regioselective formation of five-membered
rings. The levels of stereoselectivity for such reactions,
however, are less useful, e.g., 1-substituted 5-hexenyl radicals
undergo cyclization generally with only a modest preference
for cis-1,2-disubstituted cyclopentanes.3

We recently initiated a program to investigate the chemistry
of carbon-centered organotransition metal radicals, wondering
whether sterically and electronically influential organometallic
units, which have powerful effects on carbocation5 and carban-
ion reactivity,6 can induce extraordinary radical reactivity.
Indeed, initial studies of (propargyl)Co2(CO)6-radicals (1)4 have
uncovered some of the highest diastereoselectivities known for
radical dimerizations.4b We now report that cyclizations of
1-(alkynyl)Co2(CO)6-5-hexenyl radicals (2) not only proceed
with exceptionally hightrans-1,2-stereoselectivity in the5-exo
mode but also exhibit novel regioselectivity that is remarkably
sensitive to the 6-position substituent.

Initially, we sought to generate the radicals2 by reduction
of the cobalt-stabilized cations, e.g.,3a (Scheme 1). Thus,

treatmentof alcohol4a7,8 with excess HBF4‚Et2O at-30 ° C in
ether precipitated salt3awhich reacted with Zn powder in CH2-
Cl2 to produce a single cyclized product5a (38%). NMR
analysis of5a indicated the presence of only one isomer,
established as thetrans cyclopentane derivative by X-ray
diffraction (Scheme 1).8,9

The unusualtransstereoselectivity of this reaction, coupled
with its modest yield, prompted us to seek a more efficient and
general method for cyclization. Accordingly, little known, labile
propargyl bromide-Co2(CO)6 complexes,10 i.e., 6a-d, were
prepared by treatment of the alcohols4a-d (CH2Cl2, 0 °C) with
2Br2‚(Ph2PCH2CH2PPh2)11 (Scheme 1).8 A CH2Cl2 solution of
6a (R ) CO2Me) reacted with Et3B and Bu3SnH or Ph2SiH2 at
20 °C, producing a 1.0:1.8 separable mixture (70% yield from
4a) of the expectedtrans5a and a compound suspected to be
the Br-atom transfer product7a based on its spectroscopic
properties (Vide infra).
Serendipitously, it was discovered thatneat samples(or a

benzene solution)of oily cis/trans-6b (R) Ph)left in laboratory
sunlight or briefly irradiated with a 300 W sunlamp were
conVerted exclusiVely to the atom transfer product trans-7b
(76% from 4b; Scheme 2).9 This remarkably facile photo-
cyclization appears to be quite general as the bromides6a, c,
and d (R′ ) CO2Me, Me, and H) also underwent ready
conversion to cycloisomerized products.12 The regiochemical
course of these reactions depends dramatically on the C-6
substituent. Irradiation of the estertrans-6a, like the phenyl
derivative6b, caused its smooth conversion totrans7a (56%
from 4a). However, the bromide6c (R ) Me) afforded a
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mixture of isomeric products (60% from4c), comprised of the
transcyclopentyl compound7c (2:1 stereoisomeric at C-6) and
a comparable amount of the cyclohexyl derivative8c (isomeric
mixture). This rare6-endo-trigpathway became the exclusive
one when the parent complexed bromide6dwas irradiated, the
stereoisomeric cyclohexyl derivatives8d being the sole products
(2:1 trans/cis, 73% from4d).9
The ready cyclization of6 having either electron-rich or

-deficient double bonds is both synthetically promising and
consistent with an intervening radical process. That the special
reactivity of the radicals2 derives from the-Co2(CO)6 unit is
apparent since the uncomplexed bromide9d was unchanged
after being irradiated neat for 3 h or 24 h in thepresence of
Sn2Bu6 (cf. reaction of6 in Scheme 2).13 The exclusivetrans
stereoselectivity observed in the cyclizations of6 stands in
contrast to the moderatecis preference typical of most 1-sub-
stituted hexenyl substrates.3,14 Even more striking, however,
is the extent to which the ring size depends on the 6-substituent,
ranging from exclusively5-exo (when R) Ph, CO2Me) to
6-endo(with R ) H).15

The distinctive regio- and stereoselectivity of the reactions
of 6 can be rationalized in terms of an atom transfer mechanism
having a late, product-like, transition state for cyclization
(Scheme 3). This process is presumably initiated by cobalt-
assisted photoinduced homolysis of the C-Br bond to generate
radical2 which may be stabilized by metal coordination.17 As
such, the transition states for the cyclization of2 (A vsB) would
involve significant C-C bond making (and breaking) as well
as the development of radical character at the original olefinic
carbons. With a strongly radical-stabilizing group at C-6 (e.g.,
Ph or CO2R) the5-exotransition stateA is favored because it
allows delocalization of the developing radical at C-6. More-
over, steric interactions between the bulky (alkyne)Co2(CO)6
unit and the-CHR group would be amplified in this later,

probably “boat-like” transition state,3 which could account for
the hightransstereoselectivity. The6-endotransition stateB
may be preferred for R) H since it develops secondary radical
character at C-5 (vs primary C-6 radical character as inA).
When R) Me, the choice (A vs B) is between two incipient
(and similarly energetic) secondary radicals.18

Our studies to date of the propargyl-cobalt radicals1 and2
presage that new and unusual reaction selectivity will be
associated with carbon-centered organometallic radicals. Efforts
to further elucidate the origin of this selectivity and to exploit
it in organic synthesis are underway.
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